同轴电缆是射频和微波应用中最常用的传输线,因为它能提供可靠的传输,具有宽带宽、低损耗和高隔离度的优点。发射设备的主要制造商,即无线电和电视、雷达和GPS以及应急管理系统、空中和海上工艺,使用的都是同轴电缆。同时同轴电缆的使用适用于必须缆小化信号损失和衰减的任何系统。与波导不同,同轴电缆没有较低的截止频率,但它的频率是多少呢?
频率
与电磁频谱的其他部分一样,射频(RF)通过其频率以赫兹(Hz)或波长(米)来识别。在这两个概念之间存在反比关系,使得随着频率增加,波长减小,反之亦然。射频信号的强度以瓦特为单位测量。频带指的是RF频谱的指定部分,例如,在无线电广播中使用的AM和FM频带,并且在该频带内,频谱的一部分被称为带宽。
频率被识别为每秒交流电流(AC)的反转次数或周期数。例如,广播电台以每秒数千个周期的频率工作,其频率称为千赫兹(kHz);更高的频率是每秒数百万个周期,称为兆赫(MHz)。射频是主要用于传输无线电和电视信号的频带,范围从3MHz到3GHz。微波频率范围从超高频(UHF)0.3-3GHz,超高频(SHF)3-30GH到极高频(EHF)30-300GHz。
最大频率
除了一些例外,大多数同轴电缆没有特定阻带频率的实际截止项,而是使用术语截止来表示制造商测试的最高频率,或者当频率达到同轴电缆的点时除了横向电磁模式(TEM)之外,电缆变成波导和其他模式。因此,同轴电缆截止频率可以是同轴电缆保持在规格内,或者在合理范围内以避免横向磁(TM)或横向-电(TE)传播模式。尽管同轴电缆仍然可以承载频率高于TEM模式截止频率的信号,但TM或TE传输模式的效率要低得多,这对大多数应用来说并不理想。
截止频率和皮肤深度
在讨论同轴电缆中的频率时,需要注意的两个重要概念是趋肤深度和截止频率。同轴电缆由两个导体,一个内部引脚和一个外部接地屏蔽组成。当“高频导致电子朝向导体表面迁移时,沿着同轴线发生趋肤深度。这种趋肤效应导致衰减和介电加热增加,并导致沿同轴线的电阻损失更大。
为减少皮肤影响造成的损失,可以使用更大直径的同轴电缆,但增加同轴电缆尺寸将降低同轴电缆可以传输的最大频率。问题是,当电磁能量波长的大小超过横向电磁(TEM)模式并开始沿同轴线‘反弹”为横向电模式(TE11)时,会产生同轴电缆截止频率。由于新频率模式以与TEM模式不同的速度传播,因此会对通过同轴电缆传输的TEM模式信号产生反射和干扰。这被称为频率上限或截止频率。