摘要:风电螺栓在线健康监测技术目前属于比较前沿技术领域,有多种技术路线和方案,并不被行业广泛认知。本文综合概述风电螺栓在线健康监测的各种技术路线和方案,从功能,性能,安装维护等各个方面进行综述,读者可以从中获得比较全面的认知。对于从业者,可以结合项目的需求,选择合适的技术路线和方案。
来源:风力发电网
作者:嘉兴博感科技有限公司 刘双文 刘磊 戴晖辉
风力发电机组造价昂贵,且使用环境恶劣,工况复杂,在运行过程中,长期受振动、扭转、剪切等各种载荷的综合作用,各部件及部件间的连接紧固件会出现不同程度的损伤。各部位螺栓尤其是叶根螺栓时常发生螺栓紧固降低甚至螺栓断裂等故障。若故障发现不及时,会引发风电机组发生设备事故,造成巨大的经济损失,严重的会连带发生人身伤害事故。据统计,每年都会出现因螺栓松动、断裂等原因引发的倒塔、叶片脱落等严重设备事故。
风力发电机作业现场通常在近海和偏僻的山区,现场维护困难,费时费力,甚至需要停机维护,导致维护代价不菲。
因此,能够远程实时获得螺栓的健康状态显得尤为重要。随着技术的发展,目前风电螺栓的在线健康监测有了一定程度的发展,前期通过试装试用,相关技术路线已经获得用户认可,一些新建风场已经把螺栓在线健康监测系统作为一个标准配置。
风电螺栓的在线健康监测技术路线:
1.超声波方法:
该方法是当前行业主流的技术路线,也是监测螺栓轴力最精准的技术。
在螺栓一端的端面安装超声螺栓监测传感器或探头,发射和接收超声波信号,利用超声波在另一个端面反射的原理测量超声飞行时间。
超声法
博感无线超声螺栓监测传感器
螺栓在轴向拉力下会伸长,相应超声飞行时间变长,在螺栓的弹性工作区域,螺栓伸长量和螺栓轴向拉力成线性关系;同时在不同轴向应力下,超声信号的波速也相应变化,两者也是线性关系。其综合表现为超声飞行时间变化量和螺栓轴力变化量成线性关系。通过标定,可以获得超声飞行时间变化量和螺栓轴力变化量之间的相关系数。在监测时,测量到超声飞行时间,减去螺栓的初始轴力状态时的超声飞行时间,获得超声飞行时间差,并计算出螺栓轴力的变化量。再根据螺栓的初始轴力计算出螺栓当前的轴力[1]。超声波的波速随温度变化而变化,必须要作温度补偿。