欧洲的目标是到2050年实现碳中和能源系统。未来,除沼气外,合成甲烷、甲醇和氢气等合成燃料可以驱动燃气发动机,从而加速从化石能源向可再生能源的转变。目前,欧洲近 55%的已投运INNIO 颜巴赫燃气发动机机群正在使用沼气或生物甲烷。
脱碳的挑战
如今,世界及其气候的变化比以往任何时候都快。全球二氧化碳浓度平均值已超过 400 ppm。不同的方案详细描述了如何减缓全球变暖,但它们的共同点是要求大幅削减或完全淘汰化石燃料。 欧盟议会制定了“欧洲绿色协议”,将当前的挑战转化为欧洲的机遇。
摆脱化石燃料将是未来几年和几十年的挑战。作为 CO 2 排放的主要贡献者之一,交通正朝着电动汽车的方向发展。 由于电池充电时需要即时电力,所以电能需要始终可用。这意味着风能和太阳能等知名可再生能源系统将强劲增长。 由于风能和太阳能并非一直可用,因此维持脱碳的关键是储存电能。解决存储挑战是能源从化石能源向可再生能源转型的重要组成部分。这使得解决存储问题成为能源革命的重要组成部分。 为了明智地实现脱碳,需要大规模的存储设施。 氢气 (H2) 和合成燃料是一种潜在的解决方案,因为它们可以储存更长时间。【1】
关键挑战——储能
由于风能和太阳能等可再生能源的波动性,储能是一个关键挑战。 一方面,需要一个短期的解决方案来平衡一天内的波动。另一方面,季节性波动需要在半年期间存储数TWh的能量,如图 1 所示。它表明,使用电池进行储能是一个可行的选择,时间仅为几个小时。 无碳燃料的季节性储存必须遵循氢气路线。 氢气可以直接储存或储存在氢气载体中(比如合成燃料)。
图 1 不同储能技术的容量与持续时间(© INNIO颜巴赫)
以化学形式储存能量的所有储存选项都以通过水电解产生的氢气作为开始。氢气可以直接储存在地下洞穴中,也可以输送到天然气管道中,形成天然气和氢气的混合物。如果将氢气送入管道,则可能具有不同的混合速率,这种情况目前是允许的。作为替代解决方案,纯氢气可以在管道中储存或运输,从而可以轻松利用纯氢。下游工艺将能够保持此类电解制氢 (PtG)中氢气非常好的清洁度。例如,将氢气加工成甲烷(也称为合成天然气,SNG)或其他合成燃料(e-fuels)具备诸多优势。这些燃料可以在现有基础设施中使用,无需进行大量的升级改造。因此,至少从最终用户的角度来看,基础设施改用无化石能源是很容易的。但这个过程有一个缺点,即需要二氧化碳。但这一将氢气转换成甲烷的工艺过程,其缺点是需要二氧化碳。尽管大气中的二氧化碳浓度已创历史新高,但对于分离工艺来说这个浓度还是太低。另一种选择是将二氧化碳从发电厂的废气中分离,并将其用于生产合成燃料,如图 2所示。