储氢压力和温度对储氢量起着至关重要的作用。例如,在1m3体积中,气体形式的氢气在1bar下只能存储0.08kg,如果压力增加到700bar,它可以增加到42kg,如果温度降低到-255℃,则可以增加到73kg。
这些都是能源密集型的流程,因此企业正在努力提高这些流程的效率。在高压或低温下储存氢需要专用的储罐:压力容器或低温绝缘储罐。这可能带来了最具挑战性的技术问题和研究领域,以及考验材料在极端条件下的性能。
在高压下,不锈钢或复合材料通常用作储罐材料。金属罐称为I型罐,带聚合物衬里的全复合罐称为IV型储罐。V型罐是无衬里罐,这是复合氢罐生产商的圣杯。
衬里的作用是作为气体屏障。然而,衬里也是造成各种结构完整性问题的原因。例如,在储罐减压过程中,衬里与增强复合材料层分离,或暴露在温度和压力循环中逐渐失去弹性。这些问题导致研究人员对无衬里罐的概念进行了研究,在这种概念中,罐壁既要充当气体屏障,又要履行其最初作为加固墙的任务。挑战在于氢分子通过罐壁的渗透。树脂中潜在的空隙、纤维与树脂之间的脱粘或层间的分层可能最终会形成一个网格面,这将增加直径为120皮米(1皮米=10^-12米)的氢分子的渗透。
在金属中,氢在材料中的扩散也是一个问题,但与复合材料相比,金属中氢分子渗透背后的物理原理是不同的。进入金属的氢的量受多种因素的影响,包括氢的浓度、表面条件、温度。金属中的氢会导致一定程度的金属延展性和韧性降低,增强裂纹扩展,晶粒内断裂。在金属表面,氢分子分解成氢原子。这些原子沿着晶界或在现有的裂缝中移动,并在空洞中积累,从而形成亚表面压力。这导致金属表面起泡,降低了金属的强度。此外,氢的穿透可能会导致破坏,导致金属应变降低,即氢脆。众所周知,低强度钢很容易起泡;另一方面,高强度钢则更容易发生氢脆。
液氢罐的材料选择同样具有挑战性,这也反映在市场上几乎找不到在售的液氢储罐。在低温条件下,金属失效的应变通常会降低,而屈服强度会增加。具有环形绝热空间的双壁低温罐是最常见的低温压力容器设计。通常不锈钢用于建造内罐,而低碳钢用于外罐。内罐的目的是容纳低温介质并适应汽化引起的压力增加,外罐的目的是封装绝缘环形空间并提供抗冲击性。