摘要:上述文献分别从能量管理的统一系统、协同模型的分层规划、求解算法的快速搜索能力角度提出创新,通过建立“源网荷储”协同调度模型,制定日前调度计划,从而提高电网的新能源消纳能力。但是存在以下考虑不周之处:1)新能源出力的波动性与随机性,需求响应负荷的不确定性会对电网制定的日前调度计划准确性造成影响。2)工程实践表明,电化学储能是目前储能电站的发展趋势,抽水蓄能电站依旧是主要储能方式。而电化学储能具有与传统抽水蓄能电站不一样的出力特性,鲜有相关文献对两类储能电站的出力特性进行比较研究。3)“源网荷储”调度模型的研究只考虑电网日前调度情况,而忽略了电网紧急模式,不利于电网长期运行的稳定性。
推荐:什么是发电机进相运行
引言
截至2019年底,我国风电装机达2.1亿kW,较去年增幅为14%,光伏装机容量达2.05亿kW,较去年增幅为17.4%[1]。新能源的大规模接入会带来严重的弃风弃光问题。提升电网对新能源的消纳能力是当下的发展趋势。
近年来,我国对储能电站项目大力支持,实现了电网从“源网荷”系统向“源网荷储”系统的升级。江苏建山储能电站、南京江北储能电站都是已建成的示范储能电站项目,采用电化学储能,通过配备智能“源网荷”互动终端设备,实现与原江苏地区电力系统的合并,并升级为“源网荷储”系统,大幅提升了江苏地区新能源消纳能力。
区域供电网大多是主动配电网,具有主动控制、主动服务、主动管理的特点。可以通过调度指令对电网中的分布式能源,储能装置以及响应负荷实现统一调度控制。目前在“源荷”互补、“网荷储”[2]互补或“源源”[3]互补的研究已经较为成熟。但是对于更新型的“源网荷储”协同调度策略研究并不充分。
目前,对“源网荷储”的优化调度理论研究中,文献[4]采用拉格朗日乘子法对能源局域网内各可调度资源进行协同优化;文献[5]采用人工智能算法对“源网荷储”的全局指标进行统一优化;文献[6]基于分布式算法实现了更快计算速度,更好收敛性的协同优化模型的求解;文献[7]中提出通过能源路由器对各可调度资源进行能量优化管理;文献[8]提出电网的3层规划模型,并采用全局搜索能力强大的支持向量机回归(support vector regression, SVR)和并行遗传膜算法(parallel genetic membrane algorithm, PGMA)的结合算法求解协同优化模型。
上述文献分别从能量管理的统一系统、协同模型的分层规划、求解算法的快速搜索能力角度提出创新,通过建立“源网荷储”协同调度模型,制定日前调度计划,从而提高电网的新能源消纳能力。但是存在以下考虑不周之处:1)新能源出力的波动性与随机性,需求响应负荷的不确定性会对电网制定的日前调度计划准确性造成影响。2)工程实践表明,电化学储能是目前储能电站的发展趋势,抽水蓄能电站依旧是主要储能方式。而电化学储能具有与传统抽水蓄能电站不一样的出力特性,鲜有相关文献对两类储能电站的出力特性进行比较研究。3)“源网荷储”调度模型的研究只考虑电网日前调度情况,而忽略了电网紧急模式,不利于电网长期运行的稳定性。