摘 要: 发展高性能新型电解质是解决传统锂离子电池安全性和能量密度不足等问题的重要途径。液晶具有液体的流动性和晶体的各向异性,可以与锂盐混合制备液晶电解质,通过自组装形成柱状相、近晶相或双连续立方相等纳米偏析结构,为Li+的传输提供高效的离子传输通道,在锂离子电池中具有十分广阔的应用前景。尽管液晶电解质在锂离子电池中的应用研究已经取得了一些进展,但目前国内外尚未有详细的报道来总结其发展现状。因此,本文通过对相关文献的探讨,介绍了液晶电解质的研究进展,重点描述了Li+在非离子型和离子型液晶电解质中的离子传输机制,同时对应用于锂离子电池体系中的液晶电解质的电化学性能进行了总结。综合分析表明,液晶电解质可以通过进一步调控液晶分子的结构以及添加液态增塑剂等方式来提高其电化学性能,有望应用于高性能的锂离子电池体系。最后,本文对液晶电解质面临的挑战和未来可能的发展趋势进行了分析与展望。
(转载自微信公众号:储能科学与技术;作者:李昕桐,崔光磊等)
锂离子电池(lithium ion batteries, LIBs)具有能量密度高、使用寿命长、环境友好等诸多优势,被广泛应用于便携式电子设备和规模能量储存系统等。这类商业化的锂离子电池通常使用易燃、易挥发的液态有机电解质,存在较多安全隐患。因此,开发具有高离子电导率的非挥发性电解质至关重要。然而,无机电解质界面阻抗较高,大批量制备困难且成本高昂;以聚环氧乙烷(PEO)为代表的固态聚合物电解质具有较低的室温离子电导率,限制了其实际应用。
近年来,液晶电解质的研究受到了诸多关注。该电解质特有的有序自组装结构能够提供高效的离子传输路径,有望大幅提升离子电导率。虽然,目前对于液晶电解质的研究取得了一定的进展,但仍面临诸多挑战,例如大多数液晶电解质的离子导电率仍处于较低水平,难以满足商业化应用的要求,亟待进一步提升。另外,对近年来液晶电解质发展现状的评述国内外尚未报道。因此,详细地总结和评述液晶电解质的研究进展,对这类电解质的发展具有重要的指导意义。
本文首先介绍了液晶电解质的基本特征和分类,其次详细总结了目前液晶电解质在锂离子电池中的应用进展;其中,本文重点阐述了Li+在液晶电解质中的传输机制,并总结了液晶电解质基锂离子电池的电化学性能。最后,在文末对液晶电解质面临的挑战和未来可能的发展趋势进行了分析与展望。