摘要:本文从满足现场需要的角度,阐发优秀的主控系统对风电机组现场维修、维护的重要作用。通过改进和完善主控系统与之相关的功能,有利于提高现场运维的技术水平,帮助现场人员迅速分析、诊断、处理机组故障。最终实现降低度电成本的目的。
关键词:主控性能;故障停机;现场运维;数据采集与储存;故障诊断与处理
前言
随着计算芯片处理能力的不断增强,工业控制器不断更新。“大数据和人工智能”的不断发展,我国各行各业在人工智能研究方面都取得了不小的成就。不少风电企业为研发对单机、机群和环境具有“超感知”能力的智能机组进行了大量地投入,人工智能也自然成了当今风电的研究和发展方向之一。然而,现场投运的任何一台机组,在其寿命期内,均会因各种原因报故障停机,或出现部件损坏,需要登机或远程维修后,机组方能并网;运行机组还需要现场人员登机进行定期维护和检修,方能保证机组安全,切实减少和避免机组潜在故障,使机组预防检修落到实处。因此,保障现场机组维修维护的顺利实施,是风电场现场运维的根本;是机组长期、稳定及安全运行的保障;是机组正常运行不可或缺的基本条件。这也是风电“大数据和人工智能”所不可替代的。
随着风电机组大型化趋势的发展及风电技术的进步,一方面,机组部件越来越多,结构越来越复杂;另一方面,机组安全与可靠性是机组运行的基本前提,对机组安全的要求也越来越高。为保证机组安全,机组的众多部位采用了多重保护和冗余设计。这不仅增加了机组生产成本,更增加了部件损坏几率和故障点,这就决定了分析与处理机组故障的难度越来越大,对现场运维技术水平的要求也越来越高。
大型风电机组均有变频器,以变频器为例,随着海上机组的发展,如今多个风电整机厂家已推出了10MW机组,组成部件不断增多;机组及变频器结构更为复杂;单机停机损失也越来越大。变频器不仅是机组的重要组成部分,而且,对机组安全起着相当重要的作用。质量优异、技术成熟的变频器,各种保护电路也应设计得相当完善。如动力电缆出现短路,需“瞬间”触发变频器报故障停机,箱变断路器跳闸,以避免电缆、变频器或机组烧毁事故的发生[1]。利用完善的保护措施使机组及变频器安全得到保护,但是,完善的保护措施往往会使变频器故障维修的技术难度增大,在分析、判断和维修变频器故障时,需要丰富的现场经验和相当高的技术水平。如现场维修人员技术水平不够高,现场经验不够丰富,可能因分析和判断故障机组困难,造成大量不必要的备件消耗,长时间地大面积停机等,因此业内形成了一个较为奇怪现象,越是保护电路完善,质量优良的变频器,越是没有市场,例如:法国ALSTOM变频器(国内引进的“科浮德”变频器),其保护措施完善,在现场也被众多的变频器故障所证实。然而,不少已经并网运行多年的ALSTOM变频器机组,经过“低穿”、“高穿”改造,把原变频器控制板改造成保护电路不完善的国产变频器控制板,有的改造甚至直接导致了机组烧毁事故的发生。究其原因,与其保护电路设计得相对完善,变频器维修难度很大,需要较高的技术水平和现场经验不无关系[2]。而风电机组又时常安装在人迹罕至的陆地,或一望无垠的海上。条件艰苦,技术力量薄弱。因此,有必要采取切实可行有效措施为现场运维服务。