过度的二氧化碳排放造成了全球的气候污染,迫使人们寻找新的更环保、更经济、更安全的新能源。电动汽车的产生就是一个例子。在发电方面,风能发电无疑是一种很好的选择。
但是,由于风能发电本身的原因,在全球的发电量中风能发电的占比不到10%,(中国比例更低),那么原因在哪里呢?瓶颈在哪里呢? 概括起来,主要有以下两个两方面的原因。
第一 ,“天有不测风云”,风能本省具有随机性和不可控制性特征。
由于风能本身的随机性,导致风能发电机不能产生平稳的电能,并导致并网使用困难。专业人士称为“弃风”现象,这个问题到现在一直没有得到根本的解决。
第二,在结构方面,发能发电机机结构设计问题。
目前,主流的风力发电机结构多是“三叶片叶轮,水平轴,单机直驱。”这种结构,对风场的自然条件要求很高,风力利用率低风场占地面积大,投资大。
用什么办法解决这个影响风力发电发展的瓶颈,是进一步发展风力发电所要解决的当务之急。
“储能转换”是解决以上问题的一个可行性方案。“储能转换”的基本理念就是,把不可控不稳定能量先储存存起来,然后再做稳定的能量输出。如水力发电,把不稳定的水流动能通过大坝先储存起来,在大坝的下方就能产生恒稳的水流动能,稳定地转化为电能。空气流的动能,也就是风能,用风力机推动空气压缩机产生的高压空气也是不稳定的。如果能把大量不稳定的高压空气以一定的方式储存起来,同样可以生成稳定的高压空气输出。
用恒稳的高压空气来推动涡轮机发电,这样可以发出稳定的电流。在这方面,我们中国已经领先了。例如,中国科学院工程物理研究所,于2018年底在西南某地做了一个相关试验。目前,这个工程至今运行效果良好。但是该工程耗量巨大,工期较长长,很难灵活使用,对于中小型的电站,显然是是不便使用的。
这里我们做了一种创新,适用于可以在不同的风力,不同的地理环境,不同的规模下灵活使用的发电方式,就是,垂直轴空气压缩储能式的空气动力发电系统。 其基本工作流程与原理陈述如下。
一,用多个的垂直轴的小风力涡轮机,驱动多个空气压缩机,产生高压空气。把高压空气汇集储存起来以后,就可以生成稳定可控高压气流输,用稳定的高压气流去驱动空气涡轮机带动发电机发电。这样就可以做到既不受天气的影响,又可以全天平稳发电。实现全天候的发电。“储能转换”就是为了能量平稳输出平稳发电。只有平稳发电才并网使用。