氢气是一种理想的二次能源,根据质量的不同,任何其他燃料在燃烧过程中释放的能量都低于氢释放的能量,CH4、汽油和煤的单位质量热值预计分别比H2低2.4、2.8和4倍。目前氢燃料电池已经少量应用于汽车领域,而且随着该产业的持续研究,在未来的人类生活中将会广泛应用。目前世界商用氢气的48%来自于化石燃料的裂解,醇类裂解制取的氢气占比30%,焦炉气制取氢气占18%,另外4%来自于电解水。日本由于化石燃料的匮乏以及环保水平较高,氢气的制取大部分来自于电解水,而我国化石能源充足,氢气大部分来自天然气的裂解和煤炉气的重整。地球上氢元素含量高,却大多以水的形式存在,难以直接利用。探索低成本、高效率、高纯度的大规模工业化制氢技术成为构建“氢社会”的基础。基于此本文对制氢领域取得的最新研究进展进行系统介绍。
1、氢气制备现状
目前,工业上常见的制氢的方法按照原料分类,可以将其分为:水分解制氢、有机物分解制氢、NH3分解、生物质制氢和硼氢化物催化水解制氢。
推荐:柴油发电机需要多少钱买
1.1 水分解制氢
水作为地球上最常见的资源,所蕴含的氢能不可估量,假如人类能够通过水来获取氢气,效益将是巨大的。根据制取方法不同,大致分为光催化水分解、电解水或电解海水等方法。
1972年Fujishima和Honda首先报道了TiO2半导体在光照条件下产生H2这一现象,而光催化效率经过数十年的研究得到了显著改善,但目前该技术的效率和稳定性依然无法满足工业化生产的标准,并且很少有人致力于研究可大规模的光催化制氢系统。常见的光催化水制氢的方法包括光电化学池、光助络合催化和半导体光催化。光催化水分解制氢的原理如图1所示,主是光照射到催化剂上发生诱导效应,由于光的能量大于催化剂禁带的禁阻,价带中的电子跃迁至导带,产生电荷,在价带中产生空穴,电荷参加还原反应生成氢气,空穴参加氧化反应生成氧气。光电化学电池法和光络合催化法是主要是吸收太阳光中的紫外光,但两者不同的是后者借助光敏剂可以提高对紫外光的吸收率,效率比光电化学电池法高出7%。这两种催化剂的价带过宽,只对紫外光产生响应,但太阳光中紫外光仅占3%,因此单靠这两种方法无法实现大规模的光催化制氢。半导体光催化主要因为其催化剂(包括:过渡金属氧化物、硫化物、氮化物、层状金属氧化物、复合层状物)价带低,尤其是某些非金属改性半导体(主要掺入N、F、C、S的阴离子)催化剂,可以显著降低其价带,扩展吸收光进入可见光范围内。邹松华等对TiO2半导体进行C修饰,对可见光的响应更强,提高了光子利用率和催化效率,是一种较为实用的方法。