摘 要:本文针对锂硫电池产业化进展缓慢的现状,从实用化层面分析了制约锂硫电池发展的基本问题:正极面容量低,电解液用量高,电池倍率性能差及锂负极的不稳定性,并结合自身工作,提出了解决方案。
锂硫电池以其高比能量、原料廉价、环境友好等特点,被认为是继锂离子电池之后最有可能实用化的二次电池新体系。然而,锂硫电池从发明至今已有60年的时间,集中研发也近10年,尚未实现真正意义上的规模应用,原因何在?众所周知,锂硫电池存在正极活性物导电性差、穿梭效应、体积膨胀及自放电等科学层面的固有问题,这里不作深入讨论。我们在软包装锂硫电池研发方面耕耘多年,积累了一些经验,本文从实用化层面将制约锂硫电池发展的问题进行了梳理、分析,希望能抛砖引玉,引发大家对相关问题的关注、思考和讨论,共同推动锂硫电池的产业化进程。
一
锂硫电池正极面容量低的问题
图1是400W•h/kg锂硫电池各组分的重量分布图,由图可知,活性物质硫在电池中的含量仅占15%。主要原因在于单质硫的密度较小,在电池有限的体积中难以填装大量的硫,加上锂硫电池电解液用量大,使得锂硫电池的实际能量密度远低于理论值,即电池的实现效率低。要实现锂硫电池的高比能量,首先应当提高电池硫的填装量,同时提高硫的比容量,即获得高面容量的正极。
高面容量正极要通过“四高”途径——正极材料高含硫、正极高含硫、正极高载硫及高的活性物质利用率(即硫的比容量)来实现,其中前“三高”是前提条件,在这些前提条件下,要尽可能提高活性物质硫的利用率。如400W•h/kg的锂硫电池,正极片的面容量需达到5 mA·h/cm2以上。假设硫的比容量达到1250mA·h/g,那么正极的载硫量要大于4mg/cm2(单面),一般来说正极含硫量要大于75%,同时满足上述条件,对于锂硫电池来说并非易事。锂硫电池正极存在放电中间溶解-沉积现象,意味着多硫离子浓度梯度和空间分布发生变化,导致扩散路径和反应动力学发生改变。极片含硫和载硫越高,多硫离子浓度梯度和空间分布变化越大,越难以实现硫的高比容量。而提高硫的比容量是提高电池比能量的最直接、有效的途径。以10A•h锂硫软包装电池为例,硫的比容量每提高100mA•h/g,电池的比能量将提高50~ 60 W•h/kg。